Q	P. Code: 19CE0118	R 1	9				
R	eg. No:						
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTT (AUTONOMOUS)	UR					
	B.Tech III Year I Semester Regular Examinations December-2021						
	TRANSPORTATION ENGINEERING						
Т	ime: 3 hours Max.	Mark	s: 60				
	(Answer all Five Units $5 \times 12 = 60$ Marks)	1. Iunit	5.00				
	UNIT-I						
1	What are the engineering surveys conducted to fix the alignment of a highway?	L1	12M				
	OR						
2	a A national highway having design speed 80 kmph passing through rolling terrain	L3	8M				
	in heavy rainfall area has a horizontal curve of radius 500 m. Design the length of						
	transition curve assuming suitable data. Pavement is rotated about the center for						
	super elevation.						
	b Explain PIEV theory.	L1	4M				
	UNIT-II						
3	Explain the significance of traffic studies. Briefly explain any four types of traffic	L2	12M				
	studies.						
	OR						
4	Discuss about various Engineering measures that can help in reducing time accident	L2	12M				
	rate.						
	UNIT-III						
5	a Design a new flexible pavement for a two-lane undivided carriageway using the	L3	8M				
	following data: Design CBR value of subgrade = 8.0%, Initial traffic on						
	completion of construction = 1800 CV per day, Average growth rate = 6.0% per						
	year, Design life = 15 years, VDF value = 2.5 .						
	b Draw the stress distribution and cross section in flexible pavements and rigid	L1	4M				
	pavements?						
	OR						
6		L2	12M				
	functions of each.						
	UNIT-IV						
7	a What are the advantages and disadvantages of steel sleepers?	L2	6M				
	b Explain causes of creep.	L2	6M				
	그는 이 나는 것 같이 있는 것 같은 것 같						

Page 1 of 2

Q	.P.	Code: 19CE0118	R19)		
		OR				
8	a	Explain for coning of wheels.	L1	6M		
	b	What are the functions and requirements of fastenings?	L1	6M		
		UNIT-V				
9	a	Define grade compensation? If the ruling gradient is 1 in 140 on a particular	L2	6M		
		section of MG and at the same time a 3.8 degree curve is situated on this ruling				
		gradient, find out the allowable ruling gradient.				
	b	What are the operational classifications of stations? Write about requirements of	L2	6M		
		transition curve and the difference between pusher gradient and momentum				
		gradient?				
OR						
10	a	Explain the classification of gradient in railways.	L1	6M		

a Explain the classification of gradient in railways.
b What is grade compensation in railway track design? Why is it necessary to
b U1
c M
c M

*** END ***